ME 260: Mechanical Engineering Dráwing II

Spur Gear Profile

Examples of Common Gear Types

Basics

Gear

Spur Gear \quad Detail Construction

Basics

Spur Gear

Terminology

The pitch circle is a theoretical circle upon which all calculations are usually based; its diameter, d is the pitch diameter. The pitch circles of a pair of mating gears are tangent to each other.

The circular pitch, p is the distance, measured on the pitch circle, from a point on one tooth to a corresponding point on an adjacent tooth.

The module, m is the ratio of the pitch diameter to the number of teeth. The customary unit of length used is the millimeter. The module is the index of tooth size in SI.

The diametral pitch, P_{d} is the ratio of the number of teeth on the gear to the pitch diameter. Thus, it is the reciprocal of the module. Since diametral pitch is used only with U.S. units, it is expressed as teeth per inch.

The addendum, a is the radial distance between the top land and the pitch circle.

The dedendum, b is the radial distance from the bottom land to the pitch circle. The whole depth is the sum of the addendum and the dedendum.

The clearance circle is a circle that is tangent to the addendum circle of the mating gear. The clearance, c is the amount by which the dedendum in a given gear exceeds the addendum of its mating gear.

Spur Gear

Relations for basic calculations

Diameteral Pitch (teeth per inch), $P_{d}=N / d$ Module (mm), m=d/N
Circular Pitch, $p=\pi d / N=\pi m=\pi / P_{d}$ Addendum (full depth), $a=1 / P_{d}=1 * m$
Dedendum (full depth), $b=1.25 / P_{d}=1.25^{*} m$
Clearance (full depth), $c=b-a=0.25 / P_{d}=0.25 * m$
Tooth Thickness, $\mathrm{t}=\mathrm{p} / 2=\pi \mathrm{m} / 2$
Base Circle Radius, $r_{B}=r^{*} \cos \phi$, where, r is the pitch circle radius and ϕ is the pressure angle.

ME 260
Department of Mechanical Engineering, BUET

Spur Gear \quad The Involute Profile

- Tooth profile is not involute below the base circle. - Base circle could be larger or smaller than dedendum circle depending on parameters such as the pressure angle, number of teeth etc.

$A B_{1}=B_{1} I_{1}$
$A B_{2}=B_{2} I_{2}$
$A B_{3}=B_{3} I_{3}$
$A B_{4}=B_{4} I_{4}$

References \quad Dig deeper if you want

- Shigley, J. E., Mischke, C. R., Budynas, R. G., and Nisbett, K. J., 2008. Mechanical Engineering Design. McGraw-Hill.
- American Gear Manufacturers Association, 1988. "Fundamental rating factors and calculation methods for involute spur and helical gear teeth". ANSI/AGMA 2001-B88.
- Childs, P. R. N., 2004. Mechanical Design. Elsevier Butterworth-Heinemnan.
- Marghitu, D. B., 2005. Kinematic Chains and Machine Components Design. Elsevier.

